Enhancing energy efficiency, content distribution, latency, and transmission speeds are vital components of communication systems. Multiple access methods hold great promise for boosting these performance indicators. This manuscript evaluates the effectiveness of Non-Orthogonal Multiple Access (NOMA) and Orthogonal Multiple Access (OMA) systems within a single cell, where users are scattered randomly and rely on relays for dependability. This paper presents a model for improving energy efficiency, content distribution, latency, and transmission speeds in communication systems using NOMA and OMA systems within a single cell. Additionally, this paper also proposes a caching strategy using unmanned aerial vehicles (UAVs) as aerial base stations for ground users. These UAVs distribute cached content to minimize the overall latency of content demands from ground users while modifying their positions. We carried out simulations using various cache capacities and user counts linked to their respective UAVs. Furthermore, we evaluated OMA and NOMA in terms of the achievable rate and energy efficiency. The proposed model has achieved noteworthy enhancement across various scenarios including different sum rates, numbers of mobility users, diverse cache sizes, and amounts of power allocation.