<span>Biometric identification systems, which use physical features to check a person's identity, ensure much higher security than password and number systems. Biometric features such as the face or a fingerprint can be stored on a microchip in a credit card, for example. A single modal biometric identification system fails to extract enough features for identification. Another disadvantage of using only one feature is not always readable. In this article, a smart multimodal biometric verification model for identifying and verifying a person's identity is recommended based on artificial intelligence methods. The proposed model is identified the iris and finger vein unique patterns each individual to overcome many challenges such as identity fraud, poor image quality, noise, and instability of the surrounding environment. Several experiments were performed on a dataset containing 50 people by using many matching methods. The results of the proposed model were provided a higher accuracy of 98%, with FAR and FRR of 0.0015% and 0.025%, respectively.</span>
<p>Wireless networks are currently used in a wide range of healthcare, military, or environmental applications. Wireless networks contain many nodes and sensors that have many limitations, including limited power, limited processing, and narrow range. Therefore, determining the coordinates of the location of a node of the unknown location at a low cost and a limited treatment is one of the most important challenges facing this field. There are many meta-heuristic algorithms that help in identifying unknown nodes for some known nodes. In this manuscript, hybrid metaheuristic optimization algorithms such as grey wolf optimization and salp swarm algorithm are used to solve localization problem of internet of things (IoT) sensors. Several experiments are conducted on every meta-heuristic optimization algorithm to compare them with the proposed method. The proposed algorithm achieved high accuracy with low error rate (0.001) and low power <br />consumption.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.