Diamond-like carbon (DLC) films that are a type of amorphous solids exhibit excellent mechanical properties and superior tribological performances and thus can be used as the coating of workpieces to improve their wear resistance and reduce their surface friction. The tribological behaviors of the DLC films are sensitive to many factors such as the film compositions, operational parameters and environment. These sensitivities highly complicate the tribological mechanisms of the DLC films and largely degrade their reliability and performances. Due to the difficulty to observe the evolution of the contact interfaces, particularly their detailed atomic structures at the nanoscale, investigation of the tribological mechanisms of the DLC films is challenging. Molecular dynamics (MD) simulation is a powerful technique used to investigate the nanoscale physical and chemical phenomena which can hardly be observed in experiments. This PhD dissertation adopts MD simulation as the main approach to investigate the nanoscale tribological mechanisms of DLC films under different operational conditions. The effects of the load, velocity and the surface roughness of DLC films on their tribological behaviors are studied for two-body contact cases in which a diamond tip slides against a DLC film. It is found that the increase of the load can induce transition of wear from adhesive to abrasive and highly increase wear rate of the film. Its friction force follows the macroscale Bowden-Tabor model at a small load, but diverges from such model at a large load due to the formation of transfer layers. This keeps consistent with experimental observations in literature and thus demonstrates that the macroscale tribological mechanisms are still valid at the nanoscale. The friction force and wear rate of the film decrease with the velocity due to the reduction of the sliding depth of the diamond