Background
Panax notoginseng (Burk.) F. H. Chen (P. notoginseng) is a traditional Chinese medicine that has been used therapeutically for cardiovascular diseases, inflammatory diseases and traumatic injuries as well as for external and internal bleeding due to injury. Ginsenoside Rb1, a crucial monomeric active constituent extracted from P. notoginseng, has attracted widespread attention because of its potential anti-inflammatory, bacteriostatic, and cell growth-promoting effects. In this study, the therapeutic effects of ginsenoside Rb1 on second-degree burn in rats and the potential underlying mechanisms were explored.
Methods
A rat model of second-degree burn injury was established, and skin wound healing was monitored at different time points after ginsenoside Rb1 treatment. HE staining was performed to identify burn severity, and biological tissues were biopsied on days 0, 7, 14, and 24 after treatment. Skin wound healing at different time points was monitored by macroscopic observation. Furthermore, IHC, WB, and RT-PCR were utilized to determine the protein and mRNA expression levels of PDGF-BB, PDGFR-β, and FGF-2 in wound tissues after treatment.
Results
HE staining showed that after 24 days of ginsenoside Rb1 treatment, skin tissue morphology was significant improved. Macroscopic observation demonstrated that in ginsenoside Rb1-treated rats, the scab removal time and fur growth time were decreased, and the wound healing rate was increased. Collectively, the results of IHC, WB and RT-PCR showed that PDGF-BB, PDGFR-β, and FGF-2 expressions peaked earlier in ginsenoside Rb1-treated rats than in model rats, consistent with the macroscopic observations.
Conclusion
Collectively, these findings indicated that ginsenoside Rb1 promotes burn wound healing via a mechanism possibly associated with upregulation of FGF-2/PDGF-BB/PDGFR-β gene and protein expressions.