The Earth is under increasing stress owing to carbon emissions. Clean energy forms constitute an area of increasing technological interest. Geothermal energy is a clean alternative energy form that can be harnessed from the Earth's core. The use of geothermal energy resources is gaining substantial interest in many countries, as an integral part of 21 st century clean energy solutions and meeting stringent emission requirements. The objective of this research is to investigate an alternative approach to clean and renewable geothermal energy utilization through geothermal ground water pressure applied within a water turbine. The groundwater pressure from the candidate geothermal sites considered is applied to drive a water turbine for the generation of electrical energy. The geothermal candidate sites are low-temperature (i.e. <60˚C) geothermal springs, where it is not beneficial to apply low temperatures in a Rankine cycle steam turbine due to the low enthalpy. Simple calculations are conducted to estimate the electrical energy output of each candidate site. This may technically be regarded as a thermodynamic problem, albeit one that does not require full thermodynamic cycle analysis. The results of the simple non-rigorous analysis indicate that the electrical energy generation potential is greater when using geothermal water pressure (2.5 MW e ) than when using low geothermal temperature (0.005 MW e ).particularly high projected increase in energy demand. The deployment of alternative and clean energy forms will undoubtedly enhance socio-economic conditions, and over time, climate changes will also be reduced (that is, by preventing anthropogenic greenhouse gases from fossil fuels and the resulting warming).According to World Bank estimates, countries in SSA experience annual electrical power outages ranging from 50 h to 4600 h, which can be juxtaposed with the 8760 h available in a year. As a result, the majority of the populace rely on diesel-or-petrol generated internal combustion engine (ICE) to meet electrical energy needs. However, the cost of using such generators is significant. In the most populous nation in Africa, namely Nigeria, the mean net cost of electrical energy from ICE generators is approximately $14 billion annually, whereas in a smaller nation like Senegal it is approximately $4 million annually. These estimates are also higher than the cost of grid electricity. Also, in Nigeria, the unreliable electricity, costs the economy over $25 billion annually. The broader implications thereof include pollutant emissions that endanger both the environment and human health [1] [2].One of the many means of addressing the electrical energy deficit and improving the environment in developing nations may be through the use of renewable energy forms, such as geothermal energy. Diversifying energy resource generation will enhance energy security and help build an all-encompassing base in the mid-to-long-term energy situation. For example, according to the US Energy Information Administration, as of 2018, car...