Improving photovoltaic systems in terms of temporal responsiveness, lowering steady-state ripples, high efficiency, low complexity, and decreased tracking time under various circumstances is becoming increasingly important. A particle-swarm optimizer (PSO) is frequently used for maximum power-point tracking (MPPT) of photovoltaic (PV) energy systems. However, during partial-shadowing circumstances (PSCs), this technique has three major drawbacks. The first problem is that it slowly converges toward the maximum power point (MPP). The second issue is that the PSO is a time-invariant optimizer; therefore, when there is a time-variable shadow pattern (SP), it adheres to the first global peak instead of following the dynamic global peak (GP). The third problem is the high oscillation around the steady state. Therefore, this article proposes a hybrid PSO-PID algorithm for solving the PSO’s three challenges described above and improving the PV system’s performance under uniform irradiance and PSCs. The PID is designed to work with the PSO algorithm to observe the maximum voltage that is calculated by subtracting from the output voltage of the DC-DC boost converter and sending the variation to a PID controller, which reduces the error percentage obtained by conventional PSO and increases system efficiency by providing the precise converter-duty cycle value. The proposed hybrid PSO-PID approach is compared with a conventional PSO and bat algorithms (BAs) to show its superiority, which has the highest tracking efficiency (99.97%), the lowest power ripples (5.9 W), and the fastest response time (0.002 s). The three aforementioned issues can be successfully solved using the hybrid PSO-PID technique; it also offers good performance with shorter times and faster convergence to the dynamic GP. The results show that the developed PID is useful in enhancing the conventional PSO algorithm and solar-system performance.