About 90% of traffic crashes are caused by human factors, within which traffic violations are one of the most typical and common causes. In order to investigate the relationship between traffic violations and traffic crashes, this research targets signalized intersections in two Chinese cities: Yinchuan and Suqian. Thirty-one intersections are selected as the research sites, and additionally, the traffic volume, traffic violation, and traffic crash data of each intersection are collected for one year. A White’s test is conducted to test the homoscedasticity of the data and a multiple linear regression model is employed to investigate the relationship between traffic crashes and violations. The results show the following: (1) although the research sites are located in two different cities, the data is homoscedastic, which suggests that the above result may be statistically stable between different cities. (2) There is a significant multiple linear regression relationship (R2 = 0.782, adjusted R2 = 0.716) between the total number of traffic crashes and traffic violations. Among the chosen 7 independent variables, four are significantly related to the dependent variable, namely, driving commercial vehicle during internship, wrong-way entry, speeding, and traffic-light violation. (3) With the increase of annual average daily traffic (AADT), the number of total crashes goes up; however, the injury-or-fatality rate decreases, which means that intersections with smaller traffic volumes tend to have higher traffic crash severity. Based on the above conclusions, it is possible to conduct more targeted enforcement to improve the safety of intersections.