Homoplastic mutations are mutations independently occurring in different clades of an organism. The homoplastic changes may be a result of convergence evolution due to selective pressures. Reports on the analysis of homoplastic mutations in Mycobacterium tuberculosis have been limited. Here we characterized the distribution of homoplastic single nucleotide polymorphisms (SNPs) among genomes of 1,170 clinical M. tuberculosis isolates. They were present in all functional categories of genes, with pe/ppe gene family having the highest ratio of homoplastic SNPs compared to the total SNPs identified in the same functional category. Among the pe/ppe genes, the homoplastic Snps were common in a relatively small number of homologous genes, including ppe18, the protein of which is a component of a promising candidate vaccine, M72/AS01E. The homoplastic SNPs in ppe18 were particularly common among M. tuberculosis Lineage 1 isolates, suggesting the need for caution in extrapolating the results of the vaccine trial to the population where L1 is endemic in Asia. As expected, homoplastic SNPs strongly associated with drug resistance. Most of these mutations are already well known. However, a number of novel mutations associated with streptomycin resistance were identified, which warrants further investigation. A SNP in the intergenic region upstream of Rv0079 (DATIN) was experimentally shown to increase transcriptional activity of the downstream gene, suggesting that intergenic homoplastic SNPs should have effects on the physiology of the bacterial cells. Our study highlights the potential of homoplastic mutations to produce phenotypic changes. Under selective pressure and during interaction with the host, homoplastic mutations may confer advantages to M. tuberculosis and deserve further characterization. Mycobacterium tuberculosis (Mtb) is a successful human-adapted species that has undergone long-term coevolution with its human host 1. Previous studies 2,3 revealed the clonal expansion of Mtb, indicating a very low possibility of horizontal gene transfer between strains. Therefore, genetic variations in Mtb appear to be primarily derived from nucleotide substitutions, insertions, and deletions 4,5. The global population of M. tuberculosis sensu stricto is grouped into five phylogenetic lineages, including L1 (Indo-Oceanic family); L2 (East Asian family); L3 (East-African Indian family); L4 (Euro-American); and L7 6,7. In the past decade, several studies have demonstrated associations between Mtb lineages with demographic profiles, geographic distribution, transmission capacity, pathogenesis, cytokine induction, and drug resistance 6,8-10 .Once a strong association has been established, it may be explained through the identification of genotype-specific mutations, in coding or intergenic regions 11-13. Some phenotypes, such as drug resistance, usually occur in several phylogenetic lineages. Mutations that promote drug resistance can be identified by correlating