Chair of Advisory Committee: Dr. Stephen Holditch As conventional resources are depleted, unconventional gas (UG: gas from tight sands, coal beds, and shale) resources are becoming increasingly important to U.S and world energy supply. The volume of UG resources is generally unknown in most international basins. However, in 25 mature U.S. basins, UG resources have been produced for decades and are well characterized in the petroleum literature. The objective of this work was to develop a method for estimating recoverable UG resources in target, or exploratory, basins. The method was based on quantitative relations between known conventional and unconventional hydrocarbon resource types in mature U.S.
basins.To develop the methodology to estimate resource volumes, we used data from the U.S. Geological Survey, Potential Gas Committee, Energy Information Administration, National Petroleum Council, and Gas Technology Institute to evaluate relations among hydrocarbon resource types in the Appalachian, Black Warrior, Greater Green River, Illinois, San Juan, Uinta-Piceance, and Wind River basins. We chose these seven basins because they are mature basins for both conventional and unconventional iv oil and gas production. We assumed that a seven basin study would be sufficient for preliminary gas resource analysis and assessment of the new methodology. We developed a methodology we call PRISE, which uses software that investigates relationships among data published for both conventional and unconventional resources in the seven mature U.S. basins. PRISE was used to predict recoverable UG resources for target basins, on the basis of their known conventional resources. Input data for PRISE were cumulative production, proved reserves, growth, and undiscovered resources. We used published data to compare cumulative technically recoverable resources for each basin. For the seven basins studied, we found that 10% of the recoverable hydrocarbon resources are conventional oil and gas, and 90% are from unconventional resources.PRISE may be used to estimate the volume of hydrocarbon resources in any basin worldwide and, hopefully, assist early economic and development planning.