The interest in the use of ultra-wide band (UWB) impulses for medical imaging, particularly early stage breast cancer detection, is driven by safety advantage, super resolution capability, significant dielectric contrast between tumours and their surrounding tissues, patient convenience and low operating costs. However, inversion algorithms leading to recovery of the dielectric profile are complex in their nature, and vulnerable to noisy experimental conditions and environment. In this paper, we present a simplified yet robust gradient-based iterative image reconstruction technique to solve the nonlinear inverse scattering problem. The calculation is based on the Polak–Ribière's approach while the Broyden's formula is used to update the gradient in an iterative scheme. To validate this approach, both numerical and experimental results are presented. Animal derived biological targets in the form of chicken skin, beef and salted butter are used to construct an experimental breast phantom, while vegetable oil is used as a background media. UWB transceivers in the form of biconical antennas contour the breast forming a full view scanning geometry at a frequency range of 0–5 GHz. Results indicate the feasibility of experimental detection of millimetre scaled targets.