A novel planar type antenna printed on a high permittivity Rogers’ substrate is proposed for early stage microwave breast cancer detection. The design is based on a p-shaped wide-slot structure with50 Ωmicrostrip feeding circuit to eliminate losses of transmission. The design parameters are optimized resulting in a good reflection coefficient at −10 dB from 4.5 to 10.9 GHz. Imaging result using inhomogeneous breast phantom indicates that the proposed antenna is capable of detecting a 5 mm size cancerous tumor embedded inside the fibroglandular region with dielectric contrast between the target and the surrounding materials ranging from 1.7 : 1 to 3.6 : 1.
In this study, we present the experimental results of ultra-wideband (UWB) imaging oriented for detecting small malignant breast tumors at an early stage. The technique is based on radar sensing, whereby tissues are differentiated based on the dielectric contrast between the disease and its surrounding healthy tissues. The image reconstruction algorithm referred to herein as the enhanced version of delay and sum (EDAS) algorithm is used to identify the malignant tissue in a cluttered environment and noisy data. The methods and procedures are tested using MRI-derived breast phantoms, and the results are compared with images obtained from classical DAS variant. Incorporating a new filtering technique and multiplication procedure, the proposed algorithm is effective in reducing the clutter and producing better images. Overall, the methods and procedures registered a signal-to-clutter ratio (SCR) value of 1.54 dB when imaging the most challenging example involving the heterogeneously dense model in 8-antenna geometry. The SCR is slightly increased to 3.12 dB when the number of sensors is increased to 16.
Intensive research has been carried in microwave tomography techniques towards non-invasive imaging targeting several civil and military applications. The interest in using microwave frequencies for imaging arises from the superresolution capability, and low operating cost. In the medical field, non-ionizing properties and patient convenience are major advantages. However, the realization of this imaging technique faces several challenges, mainly related to sophisticated mathematical inversion techniques and experimental data acquisition systems although its foundations were laid out more than three decades ago, given the difficulty in obtaining accurate and effective dielectric reconstructions. This paper provides an insight on microwave imaging, focusing on techniques and procedures in realizing the super-resolution accuracy.
Image pattern classification is considered a significant step for image and video processing. Although various image pattern algorithms have been proposed so far that achieved adequate classification, achieving higher accuracy while reducing the computation time remains challenging to date. A robust image pattern classification method is essential to obtain the desired accuracy. This method can be accurately classify image blocks into plain, edge, and texture (PET) using an efficient feature extraction mechanism. Moreover, to date, most of the existing studies are focused on evaluating their methods based on specific orthogonal moments, which limits the understanding of their potential application to various Discrete Orthogonal Moments (DOMs). Therefore, finding a fast PET classification method that accurately classify image pattern is crucial. To this end, this paper proposes a new scheme for accurate and fast image pattern classification using an efficient DOM. To reduce the computational complexity of feature extraction, an election mechanism is proposed to reduce the number of processed block patterns. In addition, support vector machine is used to classify the extracted features for different block patterns. The proposed scheme is evaluated by comparing the accuracy of the proposed method with the accuracy achieved by state-of-theart methods. In addition, we compare the performance of the proposed method based on different DOMs to get the robust one. The results show that the proposed method achieves the highest classification accuracy compared with the existing methods in all the scenarios considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.