We present a framework for accelerating interactive rendering, grounded in psychophysical models of visual perception. This framework is applicable to multiresolution rendering techniques that use a hierarchy of local simplification operations. Our method drives those local operations directly by perceptual metrics; the effect of each simplification on the final image is considered in terms of the contrast the operation will induce in the image and the spatial frequency of the resulting change. A simple and conservative perceptual model determines under what conditions the simplification operation will be perceptible, enabling imperceptible simplification in which operations are performed only when judged imperceptible. Alternatively, simplifications may be ordered according to their perceptibility, providing a principled approach to best-effort rendering. We demonstrate this framework applied to view-dependent polygonal simplification. Our approach addresses many interesting topics in the acceleration of interactive rendering, including imperceptible simplification, silhouette preservation, and gaze-directed rendering.