Proceedings of the Eleventh International Conference on Management Science and Engineering Management 2017
DOI: 10.1007/978-3-319-59280-0_24
|View full text |Cite
|
Sign up to set email alerts
|

Comparison Between K-Means and Fuzzy C-Means Clustering in Network Traffic Activities

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
7
0
4

Year Published

2018
2018
2024
2024

Publication Types

Select...
8
1

Relationship

0
9

Authors

Journals

citations
Cited by 19 publications
(11 citation statements)
references
References 9 publications
0
7
0
4
Order By: Relevance
“…The iteration process is done continuously until no change of cluster membership in each cluster. The distance function used is Euclidean distance [43][44][45][46]. The K-Mean clustering algorithm is shown in Fig.…”
Section: K-mean Clusteringmentioning
confidence: 99%
“…The iteration process is done continuously until no change of cluster membership in each cluster. The distance function used is Euclidean distance [43][44][45][46]. The K-Mean clustering algorithm is shown in Fig.…”
Section: K-mean Clusteringmentioning
confidence: 99%
“…Aktifitas klasterisasi membutuhkan sebuah algoritme untuk menyelesaikan tugasnya. Beberapa variasi algoritme yang digunakan untuk membuat klaster di antaranya adalah k-means [8]- [11] dan fuzzy c-means (FCM) [12]- [17].…”
Section: Pendahuluanunclassified
“…Algoritme bisecting k-means menghasilkan nilai koefisien silhouette yang paling tinggi atau mempunyai kualitas klaster lebih baik daripada k-means seperti yang digunakan dalam [8]- [11]. Keunggulan bisecting kmeans ini sesuai dengan [20] yang mengukur perbandingan algoritme menggunakan parameter entropy, f-measure, dan overall similarity.…”
Section: X= ( P −M I N )×( M a X N E W −M I N Ne W ) (M A X−m I N )+M I N Ne W (2)unclassified
“…The utility of fuzzy sets lies in their ability to model uncertain or ambiguous data. Fuzziness in a fuzzy set is characterized by its Membership Functions [9], [10], [12], [13] …”
Section: Fuzzy Logicmentioning
confidence: 99%