CM 2023
DOI: 10.18137/cardiometry.2022.25.15261531
|View full text |Cite
|
Sign up to set email alerts
|

Comparison of Accuracy Rate in Prediction of Cardiovascular Disease using Random Forest with Logistic Regression

Abstract: Aim: Comparison of accuracy rate in prediction of cardiovascular disease using Novel Random Forest with Logistic Regression. Materials and Methods: The Novel Random forest (N=20) and Novel Logistic Regression Algorithm (N=20) these two algorithms are calculated by using 2 Groups and taken 20 samples for both algorithm and accuracy in this work.The sample size is determined using the G power Calculator and it’s found to be 10. Results: The Random Forest exhibited 89.06% accuracy whilst a Logistic Regression has… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 9 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?