IntroductIon: This article demonstrates the capacity of a combination of different data mining (DM) methods to support diagnosis in pediatric emergency patients. By using a novel combination of these DM procedures, a computer-based diagnosis was created. methods: a support vector machine (sVM), artificial neural networks (aNNs), fuzzy logics, and a voting algorithm were simultaneously used to allocate a patient to one of 18 diagnoses (e.g., pneumonia, appendicitis). anonymized data sets of patients who presented in the emergency department (eD) of a pediatric care clinic were chosen. For each patient, 26 identical clinical and laboratory parameters were used (e.g., blood count, c-reactive protein) to finally develop the program. results: The combination of four DM operations arrived at a correct diagnosis in 98% of the cases, retrospectively. a subgroup analysis showed that the highest diagnostic accuracy was for appendicitis (97% correct diagnoses) and idiopathic thrombocytopenic purpura or erythroblastopenia (100% correct diagnoses). During the prospective testing, 81% of the patients were correctly diagnosed by the system. dIscussIon: The combination of these DM methods was suitable for proposing a diagnosis using both laboratory and clinical parameters. We conclude that an optimized combination of different but complementary DM methods might serve to assist medical decisions in the eD.