The electrical performance of AlGaN/GaN metal-insulator semiconductor, heterostructure field-effect transistors (MISHFETs) were studied and compared to passivated and unpassivated HFETs. Record MISHFET current densities up to 1,010 mA/mm were achieved, and the devices exhibited stable operation at elevated temperatures up to 200°C. Higher maximum-drain current, breakdown voltage, and a lower gate-leakage current were obtained in the MISHFETs compared to unpassivated HFETs. The breakdown voltage of these devices exhibited a negative temperature coefficient of 0.14 VK Ϫ1 , suggesting that a mechanism other than impact ionization may be responsible. Different structures of MIS diodes also reveal that the high-field region at the gate edge dominates the breakdown mechanism of these devices. Gate-pulse measurements indicate the presence of current collapse in the MISHFETs, despite the expected passivation effect of the insulator. However, a striking feature observed was the mitigation of these effects upon annealing the devices at 385°C for 5 min under N 2 ambient.