Many runners seek health professional advice regarding footwear recommendations to reduce injury risk. Unfortunately, many clinicians, as well as runners, have ideas about how to select running footwear that are not scientifically supported. This is likely because much of the research on running footwear has not been highly accessible outside of the technical footwear research circle. Therefore, the purpose of this narrative review is to update clinical readers on the state of the science for assessing runners and recommending running footwear that facilitate the goals of the runner. We begin with a review of basic footwear construction and the features thought to influence biomechanics relevant to the running medicine practitioner. Subsequently, we review the four main paradigms that have driven footwear design and recommendation with respect to injury risk reduction: Pronation Control, Impact Force Modification, Habitual Joint (Motion) Path, and Comfort Filter. We find that evidence in support of any paradigm is generally limited. In the absence of a clearly supported paradigm, we propose that in general clinicians should recommend footwear that is lightweight, comfortable, and has minimal pronation control technology. We further encourage clinicians to arm themselves with the basic understanding of the known effects of specific footwear features on biomechanics in order to better recommend footwear on a patient-by-patient basis.