Chemical composition, molecular weight distribution, secondary structure and effect of sodium chloride concentration on functional properties of walnut protein isolates, concentrates and defatted walnut flour were study. Compared with walnut protein concentrates (75.6%) and defatted walnut flour (52.5%), walnut protein isolates contain a relatively high amount of protein (90.5%). The yield of walnut protein isolates and concentrates was 43.2% and 76.6%, respectively. In molecular weight distribution study, Walnut protein isolates showed one peak with molecular weight of 106.33 KDa (100%) and walnut protein concentrates showed four peaks with molecular weight of 16,725 KDa (0.8%),104.943 KDa(63.9%), 7.3 KDa (11.4%), 2.6 KDa (23.9%). The secondary structure of walnut protein isolates was similar to that of walnut protein concentrates, but was differ from that of defatted walnut flour. The addition of sodium chloride (0~1 M) could improve the functionality of walnut protein concentrates, isolates and defatted walnut flour. The maximum solubility, water absorption capacity, emulsifying properties and foaming properties of walnut protein isolates, concentrates and defatted walnut flour were at sodium chloride solutions of 1.0 M, 0.6 M, 0.4 M, 0.6 M, respectively. The solubility of walnut protein concentrates (32.5%) in distilled water with 0 M sodium chloride was lower than that of walnut protein isolates (35.2%). The maximum solubility of walnut protein isolates, concentrates and defatted walnut flour in solution were 36.8%, 33.7% and 9.6% at 1.0 M sodium chloride solutions, respectively. As compared with other vegetable proteins, walnut protein isolates and concentrates exhibited better emulsifying properties and foam stability.