Electrical turbocharger assist is one of the most critical technologies in improving fuel efficiency of conventional powertrain vehicles. However, strong challenges lie in high efficient operations of the device due to its complexity. In this paper, an integrated framework on characterization, control, and testing of the electrical turbocharger assist is proposed. Starting from a physical characterization of the engine, the controllability and the impact of the electrical turbocharger assist on fuel economy and exhaust emissions are both analyzed. A multivariable robust controller is designed to regulate the dynamics of the electrified turbocharged engine in a systematic approach. To minimize the fuel consumption in real time, a supervisory level controller is designed to update the setpoints of key controlled variables in an optimal way. Furthermore, a cutting-edge experimental platform based on a heavy-duty diesel engine is built. The proposed framework has been evaluated in simulations, physical simulations, and experiments. Results are presented for the developed system and the proposed framework that demonstrate excellent tracking performance, high robustness, and the potential for improvements in fuel efficiency. Index Terms-Electrical turbocharger assist (ETA), multivariable control, real-time energy management, system characterization, testing framework design. NOMENCLATURE GHG Greenhouse gas. EM Electrical machine. ETA Electrical turbocharger assist. TDE Turbocharged diesel engine. ETDE Electrified turbocharged diesel engine.