ABSTRACT:The measurement of the effect of new chemical entities on human cytochrome P450 marker activities using in vitro experimentation represents an important experimental approach in drug development. In vitro drug interaction data can be used in guiding the design of clinical drug interaction studies, or, when no effect is observed in vitro, the data can be used in place of an in vivo study to claim that no interaction will occur in vivo. To make such a claim, it must be assured that the in vitro experiments are performed with absolute confidence in the methods used and data obtained. To meet this need, 12 semiautomated assays for human P450 marker substrate activities have been developed and validated using approaches described in the GLP (good laboratory practices) as per the code of U.S. Federal Regulations. The assays that were validated are: phenacetin O-deethylase (CYP1A2), coumarin 7-hydroxylase (CYP2A6), bupropion hydroxylase (CYP2B6), amodiaquine N-deethylase (CYP2C8), diclofenac 4-hydroxylase and tolbutamide methylhydroxylase (CYP2C9), (S)-mephenytoin 4-hydroxylase (CYP2C19), dextromethorphan O-demethylase (CYP2D6), chlorzoxazone 6-hydroxylase (CYP2E1), felodipine dehydrogenase, testosterone 6-hydroxylase, and midazolam 1-hydroxylase (CYP3A4 and CYP3A5). High-pressure liquid chromatography-tandem mass spectrometry, using stable isotope-labeled internal standards, has been applied as the analytical method. This analytical approach, through its high sensitivity and selectivity, has permitted the use of very low incubation concentrations of microsomal protein (0.01-0.2 mg/ml). Analytical assay accuracy and precision values were excellent. Enzyme kinetic and inhibition parameters obtained using these methods demonstrated high precision and were within the range of values previously reported in the scientific literature. These methods should prove useful in the routine assessments of the potential for new drug candidates to elicit pharmacokinetic drug interactions via inhibition of cytochrome P450 activities.Drug-drug interactions are of great interest to scientists involved in drug research, regulatory authorities who are responsible for public safety, physicians, and their patients. Since "polypharmacy," or the practice of simultaneous prescription of more than one drug to treat one or more conditions in a single patient, has become a more common practice, drug interactions have been cited as one of the major reasons for hospitalization and even death (Lazarou et al., 1998). Thus, a great deal of effort is expended by researchers engaged in new drug research in avoiding the development of compounds that will cause drug-drug interactions.The most common mechanism underlying drug-drug interactions is the inhibition of cytochrome P450 activities. Several drugs in common use cause large increases in exposure to other drugs. Examples include ketoconazole, itraconazole, erythromycin, clarithromycin, diltiazem, and nefazodone (CYP3A); quinidine, paroxetine, and terbinafine (CYP2D6); ticlopidine (CYP2C19); ...