Abstract. California's goal to reduce greenhouse gas (GHG) emissions to a level that is 80 % below 1990 levels by the year 2050 will require adoption of low-carbon energy sources across all economic sectors. In addition to reducing GHG emissions, shifting to fuels with lower carbon intensity will change concentrations of short-lived conventional air pollutants, including airborne particles with a diameter of less than 2.5 µm (PM 2.5 ) and ozone (O 3 ). Here we evaluate how business-as-usual (BAU) air pollution and public health in California will be transformed in the year 2050 through the adoption of low-carbon technologies, expanded electrification, and modified activity patterns within a low-carbon energy scenario (GHG-Step). Both the BAU and GHG-Step statewide emission scenarios were constructed using the energy-economic optimization model, CA-TIMES, that calculates the multi-sector energy portfolio that meets projected energy supply and demand at the lowest cost, while also satisfying scenario-specific GHG emissions constraints. Corresponding criteria pollutant emissions for each scenario were then spatially allocated at 4 km resolution to support air quality analysis in different regions of the state. Meteorological inputs for the year 2054 were generated under a Representative Concentration Pathway (RCP) 8.5 future climate. Annual-average PM 2.5 and O 3 concentrations were predicted using the modified emissions and meteorology inputs with a regional chemical transport model. In the final phase of the analysis, mortality (total deaths) and mortality rate (deaths per 100 000) were calculated using established exposure-response relationships from air pollution epidemiology combined with simulated annual-average PM 2.5 and O 3 exposure. Net emissions reductions across all sectors are −36 % for PM 0.1 mass, −3.6 % for PM 2.5 mass, −10.6 % for PM 2.5 elemental carbon, −13.3 % for PM 2.5 organic carbon, −13.7 % for NO x , and −27.5 % for NH 3 . Predicted deaths associated with air pollution in 2050 dropped by 24-26 % in California (1537-2758 avoided deaths yr −1 ) in the "climatefriendly" 2050 GHG-Step scenario, which is equivalent to a 54-56 % reduction in the air pollution mortality rate (deaths per 100 000) relative to 2010 levels. These avoided deaths have an estimated value of USD 11.4-20.4 billion yr −1 based on the present-day value of a statistical life (VSL) equal to USD 7.6 million. The costs for reducing California GHG emissions 80 % below 1990 levels by the year 2050 depend strongly on numerous external factors such as the global price of oil. Best estimates suggest that meeting an intermediate target (40 % reduction in GHG emissions by the year 2030) using a non-optimized scenario would reduce personal income by USD 4.95 billion yr −1 (−0.15 %) and lower overall state gross domestic product by USD 16.1 billion yr −1 (−0.45 %). The public health benefits described here are comparable to these cost estimates, making a compelling argument for the adoption of low-carbon energy in California, with implic...