2023
DOI: 10.11591/ijeecs.v31.i1.pp299-304
|View full text |Cite
|
Sign up to set email alerts
|

Comparison of machine learning algorithms with regression analysis to predict the COVID-19 outbreak in Thailand

Abstract: Coronavirus disease (COVID-19) is a public health problem in Thailand. Currently, there are more than 5 million infected people and the rate has been increasing at some point. It is therefore important to forecast the number of new cases over a short period of time to assist in strategic planning for the response to COVID-19. The purpose of this research paper was to compare the efficiency and prediction of the number of COVID-19 cases in Thailand using machine learning of 8 models using a regression analysis … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

1
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 19 publications
1
0
0
Order By: Relevance
“…Overall results confirmed the efficiency of the proposed framework following feature selection and XGBoost algorithm implementation in industrial applications. Furthermore, authors' findings aligned with previous research where XGBoost was effectively applied in socioeconomical aspects namely medicine [33], [34], economy [35], cybersecurity [36], language processing [37] and environmental applications [38]. Regarding medical applications, feature selection and XGBoost was considered the most effective solution for heart disease classification with 99.6% accuracy [39] improving the solution of [40] where the proposed decision trees provided 97.75% accuracy.…”
Section: Resultssupporting
confidence: 77%
“…Overall results confirmed the efficiency of the proposed framework following feature selection and XGBoost algorithm implementation in industrial applications. Furthermore, authors' findings aligned with previous research where XGBoost was effectively applied in socioeconomical aspects namely medicine [33], [34], economy [35], cybersecurity [36], language processing [37] and environmental applications [38]. Regarding medical applications, feature selection and XGBoost was considered the most effective solution for heart disease classification with 99.6% accuracy [39] improving the solution of [40] where the proposed decision trees provided 97.75% accuracy.…”
Section: Resultssupporting
confidence: 77%