This paper aims to determine the efficiency in classifying and recognizing Thai digit handwritten using convolutional neural networks (CNN). We created a new dataset called the Thai digit dataset. The performance test was divided into two parts: the first part determines the exact number of epochs, and the second part examines the occurrence of overfits in the model with Keras library's EarlyStoping() function, processed through Cloud Computing with Google Colaboratory, and used a Python programming language. The main parameters for the model were a dropout of 0.75, mini-batch size of 128, the learning rate of 0.0001, and using an Adam optimizer. This study found the model's predictive accuracy was 96.88 and the loss was 0.1075. The results showed that using CNN in image classification and recognition. It has a high level of prediction efficiency. However, the parameters in the model must be adjusted accordingly.
Coronavirus disease (COVID-19) is a public health problem in Thailand. Currently, there are more than 5 million infected people and the rate has been increasing at some point. It is therefore important to forecast the number of new cases over a short period of time to assist in strategic planning for the response to COVID-19. The purpose of this research paper was to compare the efficiency and prediction of the number of COVID-19 cases in Thailand using machine learning of 8 models using a regression analysis method. Using the 475-day dataset of COVID-19 cases in Thailand, the results showed that the predictive accuracy model (R2 score) from the testing dataset was the random forest (RF) model, which was 99.06%, followed by K-nearest neighbor (KNN), XGBoost. And the decision tree (DT) had the precision of 98.97, 98.67, and 98.64, respectively. And the results of the comparison of the number of infected people obtained from the prediction The models that predicted the number of real infections were the decision tree, random forest, and XGBoost, which were effective at predicting the number of infections correctly in the 2-4 day period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.