As fleshy fruits, two major melon genera are widely produced and consumed, including the watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai] and muskmelon (Cucumis melo L.). As different cultivars, cultivated them according to consumer and grower's choice, and market conditions (i.e. seedless varieties, good shelf life, etc.). China is the world's largest producer of melons, accounted for over 52% production by weight. In the past, melons considered to be a 'seasonal delight' because of their limited availability throughout the year, however, for production flexibility, imports availability and popularity, melons are now available in year-round. In recent, the melon production is 20% within total fruits production worldwide. Over the next three decades, a forty percent increase in the production of melons is required for a growing population. For the decade to 2009, the production of total melons approximately doubled by 2005 and after which it stabled. The inherent complexities in achieving this unparalleled increase in the demands of melon fruits are worsen by the yield-depressing consequences of climate alterations or dissimilarities. With declining agricultural land and water resources, and assailing microbes and pests, the expected increases in the melons production cannot be reached at an efficient level. Elite varieties of melons such as, tolerance to drought condition and inferior lands, or disease resistant that can yield more with fewer inputs will be pivotal to success. Moreover, varieties of melons can improve with the traits such as, seedless, good shelf life, excellent flesh color and good shapes that will make them more attractive to consumers. Plant breeding methods (conventional or molecular breeding) have to be applied for regenerate the elite varieties in melon fruits to meet the global demand for next decades. This paper highlights some of the scientific and technological tools that ought to be the necessary for all improvement programs of the melon production.