The power efficiency and linearity of radio frequency (RF) power amplifiers (PAs) are critical in wireless communication systems. The main scope of PA designers is to build the RF PAs capable to maintain high efficiency and linearity figures simultaneously. However, these figures are inherently conflicted to each other and system-level solutions based on linearization techniques are required.
Digital predistortion (DPD) linearization has become the most widely used solution to mitigate the efficiency versus linearity trade-off. The dimensionality of the DPD model depends on the complexity of the system. It increases significantly in high efficient amplification architectures when considering current wideband and spectrally efficient technologies. Overparametrization may lead to an ill-conditioned least squares (LS) estimation of the DPD coefficients, which is usually solved by employing regularization techniques. However, in order to both reduce the computational complexity and avoid ill-conditioning problems derived from overparametrization, several efforts have been dedicated to investigate dimensionality reduction techniques to reduce the order of the DPD model.
This dissertation contributes to the dimensionality reduction of DPD linearizers for RF PAs with emphasis on the identification and adaptation subsystem. In particular, several dynamic model order reduction approaches based on feature extraction techniques are proposed. Thus, the minimum number of relevant DPD coefficients are dynamically selected and estimated in the DPD adaptation subsystem. The number of DPD coefficients is reduced, ensuring a well-conditioned LS estimation while demanding minimum hardware resources. The presented dynamic linearization approaches are evaluated and compared through experimental validation with an envelope tracking PA and a class-J PA The experimental results show similar linearization performance than the conventional LS solution but at lower computational cost.
La eficiencia energetica y la linealidad de los amplificadores de potencia (PA) de radiofrecuencia (RF) son fundamentales en los sistemas de comunicacion inalambrica. El principal objetivo a alcanzar en el diserio de amplificadores de radiofrecuencia es lograr simultaneamente elevadas cifras de eficiencia y de linealidad. Sin embargo, estas cifras estan inherentemente en conflicto entre si, y se requieren soluciones a nivel de sistema basadas en tecnicas de linealizacion. La linealizacion mediante predistorsion digital (DPD) se ha convertido en la solucion mas utilizada para mitigar el compromise entre eficiencia y linealidad. La dimension del modelo del predistorsionador DPD depende de la complejidad del sistema, y aumenta significativamente en las arquitecturas de amplificacion de alta eficiencia cuando se consideran los actuales anchos de banda y las tecnologfas espectralmente eficientes. El exceso de parametrizacion puede conducir a una estimacion de los coeficientes DPD, mediante minimos cuadrados (LS), mal condicionada, lo cual generalmente se resuelve empleando tecnicas de regularizacion. Sin embargo, con el fin de reducir la complejidad computacional y evitar dichos problemas de mal acondicionamiento derivados de la sobreparametrizacion, se han dedicado varies esfuerzos para investigar tecnicas de reduccion de dimensionalidad que permitan reducir el orden del modelo del DPD. Esta tesis doctoral contribuye a aportar soluciones para la reduccion de la dimension de los linealizadores DPD para RF PA, centrandose en el subsistema de identificacion y adaptacion. En concrete, se proponen varies enfoques de reduccion de orden del modelo dinamico, basados en tecnicas de extraccion de caracteristicas. El numero minimo de coeficientes DPD relevantes se seleccionan y estiman dinamicamente en el subsistema de adaptacion del DPD, y de este modo la cantidad de coeficientes DPD se reduce, lo cual ademas garantiza una estimacion de LS bien condicionada al tiempo que exige menos recursos de hardware. Las propuestas de linealizacion dinamica presentados en esta tesis se evaluan y comparan mediante validacion experimental con un PA de seguimiento de envolvente y un PA tipo clase J. Los resultados experimentales muestran unos resultados de linealizacion de los PA similares a los obtenidos cuando se em plea la solucion LS convencional, pero con un coste computacional mas reducido.