Furfurylation is an effective and green method for wood or bamboo modification that can significantly improve its physical and mechanical properties and the resistance against biological deterioration and the attack of subterranean termites. To elucidate the effect of furfurylation on the physical and multiscale mechanical properties of bamboo, the conditions of the furfurylation process were modified to cause an independent variation of the physical and multiscale mechanical properties in differently-treated bamboo samples. This was achieved by impregnating bamboo samples with solutions containing 15%, 30%, 50%, or 70% furfuryl alcohol (FA) by either of the two impregnation processes, vacuum pressure (V-P) and soaking (S) impregnation, while applying different curing conditions (wet- or dry-curing). The physical properties we measured included the absorption rate, weight percent gain (WPG), swelling efficiency (SE), and anti-swelling efficiency (ASE); the macro-mechanical properties involved the modulus of rupture (MOR), the modulus of elasticity (MOE), parallel-to-grain compressive strength (CS), and tensile strength (TS); the micro-mechanical properties included the tensile strength of bamboo’s vascular bundle and hardness and the indentation modulus of bamboo’s fiber cell walls. Finally, the correlation between the different physical and mechanical properties of the modified bamboo samples was analyzed. The results indicate that V-P impregnation made bamboo more permissible for the penetration of FA, while wet-curing was more conducive to ensuring a high curing rate. The dimensional stability of the bamboo samples treated with a high FA concentration through V-P impregnation and of those furfurylated by the S-Wet process using either medium or high FA concentrations was significantly increased. However, the dimensional stability of the bamboo samples modified with either low or medium FA concentrations decreased in both dry and wet curing. In terms of mechanical strength, furfurylation had little effect on the macro- and micro-mechanical properties of bamboo and was slightly improved in comparison to untreated samples. The results also showed a positive correlation between the macro- and micro-mechanical strength of the modified bamboo samples and a significant negative correlation between the mechanical strength and ASE. In soaking impregnation, the WPG and ASE were positively correlated, while the WPG and CS were negatively correlated. Interestingly, the correlation between the mechanical properties and ASE was not significant. Finally, both V-P-Wet and S-Wet approaches can be recommended for bamboo furfurylation, the former being time-saving and having a high curing rate in FA resin while significantly improving the moisture absorption and mechanical strength of bamboo. The advantage of the latter process is simplicity, a high utilization rate of FA, and a significant improvement in the dimensional stability of bamboo.