2019 International Conference on Electrical, Electronics and Information Engineering (ICEEIE) 2019
DOI: 10.1109/iceeie47180.2019.8981438
|View full text |Cite
|
Sign up to set email alerts
|

Comparison of Priori and FP-Growth Algorithms in Determining Association Rules

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
3
0
3

Year Published

2020
2020
2024
2024

Publication Types

Select...
4
3
1

Relationship

0
8

Authors

Journals

citations
Cited by 14 publications
(6 citation statements)
references
References 10 publications
0
3
0
3
Order By: Relevance
“…Support and confidence parameters are commonly used to assess the validity of an association. Apriori [45] and Fp-growth [46] are two popular algorithms for obtaining association rule mining, with Fp-growth being faster due to its use of a compact data structure called a tree [2], [47].…”
Section: Association Rule Mining Designmentioning
confidence: 99%
“…Support and confidence parameters are commonly used to assess the validity of an association. Apriori [45] and Fp-growth [46] are two popular algorithms for obtaining association rule mining, with Fp-growth being faster due to its use of a compact data structure called a tree [2], [47].…”
Section: Association Rule Mining Designmentioning
confidence: 99%
“…Pada penerapkan Association rules terdapat beberapa algoritma yang bisa digunakan untuk menganalisis data transaksi [5], pada penelitian ini menggunakan algoritma FP-Growth. Beberapa penelitian yang dilakukan oleh peneliti sebelumnya mengenai algoritma FP-Growth, menyimpulkan bahwa kinerja algoritma FP-Growth lebih baik dalam menghasilkan aturan asosiasi dan waktu yang dibutuhkan untuk eksekusi lebih cepat dibandingkan dengan algoritma Apriori [6].…”
Section: Pendahuluanunclassified
“…Pada penelitian ini menggunakan parameter support dengan menetapkan nilai minimum 4 % dan parameter confidence dengan menetapkan nilai minimum sebesar 19%. Dari hasil perbandingan kedua algoritma tersebut pada penelitian ini bahwa algoritma Apriori memperoleh aturan asosiasi lebih banyak daripada FP-Growth yaitu Apriori menghasilkan 11 aturan dan FP-Growth 10 aturan, namun waktu eksekusi dengan algoritma FP-Growth lebih cepat dibandingkan dengan Apriori [6].…”
Section: Tinjauan Pustaka 21 Penelitian Terdahuluunclassified
“…Jurnal Inovasi Vokasional dan Teknologi P-ISSN: 1411-3414 E-ISSN: Previous studies have reported that the FP-Growth Algorithm demonstrates superior performance in terms of processing speed compared to the Apriori Algorithm [12]- [14]. As the behavior of algorithms can vary concerning different datasets [15], both FP-Growth and Apriori algorithms were employed to examine their performance differences on the given dataset. Further, [14] and [16] emphasize the importance of context-specific evaluation of these algorithms, pointing out that factors such as the number of transactions and the average transaction width can dramatically influence algorithm performance.…”
Section: N V O T E Kmentioning
confidence: 99%