The prediction of students’ graduation outcomes has been an important field for higher education institutions because it provides planning for them to develop and expand any strategic programs that can help to improve student academics performance. Data mining techniques can cluster student academics performance in predicting student graduation. The aim of this study is to analysis the performance of data mining techniques for predicting students’ graduation using the K-Means clustering algorithm. The data pre-processing used for data cleaning, and data reducing using Principle Component Analysis to determine any variables that affect the graduation time. This algorithm processes datasets of student academics performance numbering 241 students with 16 variables. Based on the clustering using K-means, the highest accuracy rate is 78.42% in the 3-cluster model and the smallest accuracy rate is 16.60% in the 4-cluster model. The influential variable in predicting student graduation based on the value of the loading factor is the GPA total of the 1st to 6th semester.
Shopee merupakan e-commerce dengan pengguna terbanyak di Indonesia pada tahun 2021. Pengguna tersebut juga meliputi dari Provinsi Kalimantan Timur. Sebagai Provinsi yang akan menjadi lokasi ibukota baru, Kalimantan Timur memiliki potensi tinggi untuk perkembangan E-Commerce. Namun, diperlukan pengukuran untuk mengetahui seberapa besar penerimaan aplikasi e-commerce, khususnya Shopee pada masyarakat Kalimantan Timur. Maka dilakukanlah penelitian dengan menggunakan model TPB untuk mengetahui tingkat penerimaan penggunaan penggunaan e-commerce Shopee. Penelitian ini dilakukan dengan menyebar kuesioner dengan skala likert lima kepada 228 responden untuk pengumpulan data yang akan dianalisis, dan dilakukan pengujian hipotesis.Data yang dikumpulkan kemudian dianalisis menggunakan aplikasi SMART PLS 3.2.9 Structural Equation Modeling. Hasil penelitian menghasilkan, empat dari lima hipotesis diterima dan mendukung korelasi antara Behavioral Intention terhadap Behavior, menandakan adanya keterkaitan erat serta dukungan terhadap model TPB pada penelitian yang dilakukan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.