2018 International Conference on Computer Engineering, Network and Intelligent Multimedia (CENIM) 2018
DOI: 10.1109/cenim.2018.8711397
|View full text |Cite
|
Sign up to set email alerts
|

Comparison of Recognition Accuracy on Dynamic Hand Gesture Using Feature Selection

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
4
0
1

Year Published

2019
2019
2024
2024

Publication Types

Select...
6
4

Relationship

1
9

Authors

Journals

citations
Cited by 11 publications
(5 citation statements)
references
References 20 publications
0
4
0
1
Order By: Relevance
“…Bunga memiliki bentuk dan warna yang beragam sehingga dibutuhkan solusi yang dapat digunakan untuk pengembangan pembelajaran mesin. Agar mendapatkan hasil aplikasi pendeteksi jenis warna bunga lantana camara yang baik, maka dibutuhkan pemodelan warna terlatih dengan tingkat akurasi yang harus dinaikkan dengan cara melewati proses pengenalan pola yang baik, dikarenakan hal ini sangat penting dan mendasar dalam computer vision [8].…”
Section: Pendahuluanunclassified
“…Bunga memiliki bentuk dan warna yang beragam sehingga dibutuhkan solusi yang dapat digunakan untuk pengembangan pembelajaran mesin. Agar mendapatkan hasil aplikasi pendeteksi jenis warna bunga lantana camara yang baik, maka dibutuhkan pemodelan warna terlatih dengan tingkat akurasi yang harus dinaikkan dengan cara melewati proses pengenalan pola yang baik, dikarenakan hal ini sangat penting dan mendasar dalam computer vision [8].…”
Section: Pendahuluanunclassified
“…In addition to direct tools for data acquisition, the participant's ergonomics in recording data was also prepared, which aims to provide comfort and reduce student's stress levels in doing cursive handwriting. This ergonomic determination is following the model developed by [21].…”
Section: Experiments Scenariomentioning
confidence: 99%
“…Four microexpression classes were used for all experiments (disgust, happiness, surprise, and sadness) via a multi-classification approach. The motion feature from the POC-ABS feature extraction method is recognized using Supports Vector Machine (SVM)[ [35] with Radial Base Function (RBF) [6] and K-Nearest Neighbor (KNN) with Euclidean distance metric [36]. In this study, ten-fold crossvalidation was used to train and test all samples of each class.…”
Section: Micro-expression Classificationmentioning
confidence: 99%