2008
DOI: 10.1007/978-3-540-78246-9_62
|View full text |Cite
|
Sign up to set email alerts
|

Comparison of Recommender System Algorithms Focusing on the New-item and User-bias Problem

Abstract: Abstract. Recommender systems are used by an increasing number of e-commerce websites to help the customers to find suitable products from a large database. One of the most popular techniques for recommender systems is collaborative filtering. Several collaborative filtering algorithms claim to be able to solve i) the new-item problem, when a new item is introduced to the system and only a few or no ratings have been provided; and ii) the user-bias problem, when it is not possible to distinguish two items, whi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
2
0
1

Year Published

2008
2008
2020
2020

Publication Types

Select...
4
2
1

Relationship

1
6

Authors

Journals

citations
Cited by 13 publications
(3 citation statements)
references
References 7 publications
0
2
0
1
Order By: Relevance
“…genre, actors) this information can be used for recommendation. Especially when little rating information on a specific user or item is present like in the new-user and new-item problem (aka 'cold start problem'), attribute information can improve the prediction quality [12,5]. In this paper we deal with problems without any attribute information.…”
Section: Related Workmentioning
confidence: 99%
“…genre, actors) this information can be used for recommendation. Especially when little rating information on a specific user or item is present like in the new-user and new-item problem (aka 'cold start problem'), attribute information can improve the prediction quality [12,5]. In this paper we deal with problems without any attribute information.…”
Section: Related Workmentioning
confidence: 99%
“…Content information, such as item attributes, were exploited to address such issues in previous methods [1], [2], [3]. However, items with similar attributes may be of different interest for the same user.…”
Section: Introductionmentioning
confidence: 99%
“…Plusieurs autres travaux se sont orientés vers la construction de modèles unificateurs qui prennent en compte les caractéristiques des utilisateurs et des documents ; (Basu et al, 1998) ont proposé l'application d'un classifieur d' attributs sur les utilisateurs couplé avec des informations sur le contenu des documents (ici le genre, les acteurs, le directeur… d'un film). Ainsi, il est possible de recommander de nouveaux documents sur la base des préférences des utilisateurs vis-à-vis de ces attributs sans disposer d'aucune évaluation au départ (Hauger et al, 2007). (Shein et al, 2002) proposent plusieurs modèles de probabilités où l'idée de base est l'analyse par la sémantique latente pour identifier de possibles liens sémantiques (une affinité particulière par exemple) cachés liant un document et un utilisateur.…”
Section: Les Systèmes De Filtrage Hybrideunclassified