Proceedings of the 2008 ACM Conference on Recommender Systems 2008
DOI: 10.1145/1454008.1454047
|View full text |Cite
|
Sign up to set email alerts
|

Online-updating regularized kernel matrix factorization models for large-scale recommender systems

Abstract: Regularized matrix factorization models are known to generate high quality rating predictions for recommender systems. One of the major drawbacks of matrix factorization is that once computed, the model is static. For real-world applications dynamic updating a model is one of the most important tasks. Especially when ratings on new users or new items come in, updating the feature matrices is crucial.In this paper, we generalize regularized matrix factorization (RMF) to regularized kernel matrix factorization (… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

1
97
0
3

Year Published

2010
2010
2019
2019

Publication Types

Select...
5
2
1

Relationship

1
7

Authors

Journals

citations
Cited by 186 publications
(101 citation statements)
references
References 13 publications
1
97
0
3
Order By: Relevance
“…Faktorisasi Matriks merupakan salah satu metode yang tangguh untuk menghasilkan rekomendasi jika dibandingkan dengan metode k-NN klasik [1]. Pada Faktorisasi Matriks, data User dan Item dibentuk ke dalam sebuah bentuk matriks R yang kemudian mengalami fase training untuk menghasilkan sebuah rekomendasi.…”
Section: Pendahuluanunclassified
See 2 more Smart Citations
“…Faktorisasi Matriks merupakan salah satu metode yang tangguh untuk menghasilkan rekomendasi jika dibandingkan dengan metode k-NN klasik [1]. Pada Faktorisasi Matriks, data User dan Item dibentuk ke dalam sebuah bentuk matriks R yang kemudian mengalami fase training untuk menghasilkan sebuah rekomendasi.…”
Section: Pendahuluanunclassified
“…[2] Nilai Interaksi User-Item pada MF dinyatakan dalam perhitungan dot product dari setiap user dan item, Sebagai berikut [1] …”
Section: Issn :2460-3295unclassified
See 1 more Smart Citation
“…In this work, we make use of matrix factorization (Rendle and Schmidt-Thieme, 2008;Koren et al, 2009), which is known to be one of the most successful methods for rating prediction, outperforming other state-of-the-art methods (Bell and Koren, 2007) and tensor factorization (Kolda and Bader, 2009;Dunlavy et al, 2010) to take into account the sequential effect.…”
Section: Factorization Techniquesmentioning
confidence: 99%
“…In this work, we make use of matrix factorization (Rendle and Schmidt-Thieme, 2008;Koren et al, 2009), which is known to be one of the most successful methods for rating prediction, outperforming other state-of-the-art methods (Bell and Koren, 2007) and tensor factorization (Kolda and Bader, 2009;Dunlavy et al, 2010) to take into account the sequential effect. We will briefly describe these techniques in the following subsections.…”
Section: Techniques For Recommender Systemsmentioning
confidence: 99%