2013
DOI: 10.1371/journal.pone.0067543
|View full text |Cite
|
Sign up to set email alerts
|

Comparison of Sensor Selection Mechanisms for an ERP-Based Brain-Computer Interface

Abstract: A major barrier for a broad applicability of brain-computer interfaces (BCIs) based on electroencephalography (EEG) is the large number of EEG sensor electrodes typically used. The necessity for this results from the fact that the relevant information for the BCI is often spread over the scalp in complex patterns that differ depending on subjects and application scenarios. Recently, a number of methods have been proposed to determine an individual optimal sensor selection. These methods have, however, rarely b… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
10
0
1

Year Published

2014
2014
2021
2021

Publication Types

Select...
8
1

Relationship

0
9

Authors

Journals

citations
Cited by 19 publications
(11 citation statements)
references
References 24 publications
0
10
0
1
Order By: Relevance
“…Most BCI studies use the international 10–20 (or 10–10) system for placement of EEG electrodes (Homan et al, 1987 ; Jurcak et al, 2007 ). Because EEG responses such as the P300 are highly variable across brain areas, channel selection algorithms are applied to determine a region of interest (ROI) (Feess et al, 2013 ; Alotaiby et al, 2015 ). In fNIRS, channel averaging is used because the hemodynamic responses are not distinctive among channels (Bhutta et al, 2015 ; Naseer and Hong, 2015b ; Liu and Hong, 2017 ).…”
Section: Introductionmentioning
confidence: 99%
“…Most BCI studies use the international 10–20 (or 10–10) system for placement of EEG electrodes (Homan et al, 1987 ; Jurcak et al, 2007 ). Because EEG responses such as the P300 are highly variable across brain areas, channel selection algorithms are applied to determine a region of interest (ROI) (Feess et al, 2013 ; Alotaiby et al, 2015 ). In fNIRS, channel averaging is used because the hemodynamic responses are not distinctive among channels (Bhutta et al, 2015 ; Naseer and Hong, 2015b ; Liu and Hong, 2017 ).…”
Section: Introductionmentioning
confidence: 99%
“…Across research areas different treatments have been proposed for evaluating imbalanced classes such as genetics (Velez et al, 2007; Garcia-Pedrajas et al, 2012), bioinformatics (Levner et al, 2006; Rogers and Ben-Hur, 2009), medical data sets (Cohen et al, 2003, 2004; Li et al, 2010), data mining, and machine learning (Bradley, 1997; Fawcett and Provost, 1997; Kubat et al, 1998; Gu et al, 2008; Powers, 2011). In neuroscience, recent approaches evaluating the performance of brain-computer interfaces are trying to find a more direct and intuitive measure of performance in imbalanced cases (Zhang et al, 2007; Hohne and Tangermann, 2012; Salvaris et al, 2012; Feess et al, 2013). However, the decision for a single metric is often avoided by keeping the numbers for the two classes separated (e.g., Bollon et al, 2009; Kimura et al, 2010).…”
Section: Existing Approaches To Deal With Imbalancementioning
confidence: 99%
“…Daher wird häufig eine Extraktion von Merkmalen bevorzugt, die es erlaubt, aus den Daten zu lernen, welche Merkmale für die Dekodierung informativ sind. Beispielsweise gibt es verschiedene Ansätze, individuelle Kanäle zu selektieren, die vielversprechend für die Dekodierung sind [2][3][4] [5]) und sich besonders für die Detektion von motorischer Vorstellung bewährt hat, die häufig für die Steuerung von BCIs verwendet wird [6].…”
Section: Introductionunclassified