2014
DOI: 10.1016/j.aasri.2014.09.005
|View full text |Cite
|
Sign up to set email alerts
|

Comparison of SIFT and SURF Methods for Use on Hand Gesture Recognition based on Depth Map

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
20
0
2

Year Published

2015
2015
2020
2020

Publication Types

Select...
5
4
1

Relationship

0
10

Authors

Journals

citations
Cited by 65 publications
(22 citation statements)
references
References 3 publications
0
20
0
2
Order By: Relevance
“…: SIFT can be defined as one of the widely utilized local visual descriptors. It includes two steps in which, the first step, is about feature detection of images, the second step describes the extracted features (Sykora et al, 2014). SIFT detector is strong and stable to rotations, scaling, translation and partly stable to illumination variations and viewpoint of the camera (Mansourian et al, 2015).…”
Section: Histogram Of Oriented Gradient (Hog)mentioning
confidence: 99%
“…: SIFT can be defined as one of the widely utilized local visual descriptors. It includes two steps in which, the first step, is about feature detection of images, the second step describes the extracted features (Sykora et al, 2014). SIFT detector is strong and stable to rotations, scaling, translation and partly stable to illumination variations and viewpoint of the camera (Mansourian et al, 2015).…”
Section: Histogram Of Oriented Gradient (Hog)mentioning
confidence: 99%
“…A multi-scale inference procedure is used to produce high-resolution object detections at a low cost by a few network applications. Sykora et al (2014) suggested two feature extraction methods: SIFT as the first method and SURF method as second. They were applied on set of depth map images of left hand gestures.…”
Section: Literature Reviewmentioning
confidence: 99%
“…SURF juga dipilih karena memiliki descriptor dengan 64 nilai poin ambang yang lebih ringkas namun memiliki semua informasi penting, daripada SIFT yang memiliki descriptor dengan 128 nilai poin ambang. Pada MATLAB algoritma SURF yang digunakan telah ada dalam kelas Bag of Words[2].Bagof Words (BoW) dalam visi komputer adalah penyerderhanaan dalam representasi fitur sebuah gambar dalam kata-kata. Pembentukan BoW akan melewati 3 tahap yaitu deteksi fitur, deskripsi fitur dan pembuatan codebook.…”
unclassified