The study of increasing range of standard 122 mm artillery projectile was done mainly by changing the base drag of standard projectile using hollow base shape and base bleed unit. The drag reduction in the case of the projectile with base bleed was up to 20% compared to the standard projectile, and in the case of the hollow base projectile, the drag reduction reaches 8%. Optimisation of base drag reduction was done by using the computational fluid dynamics software (CFD). CFD analyses enable complete calculation of fluid parameters behind the projectile base and determination of base bleed burning gases influence on flow field. In that way, we determine the pressure on the projectile base in the case of projectile with hollow base or with base bleed. CFD computations give us relation between base drag reduction and characteristics of base bleed grain. Using the CFD results in the modified 6-degree of freedom (6-DOF) projectile trajectory model, we calculate ranges of projectiles. The verification of estimated range increase by projectile modification was done by comparison with experimental results obtained on firing range. Comparison of measured range and results from 3-D radar show good compatibility with theoretical results from the modified 6-DOF.