An artillery projectile in flight produces a low pressure area immediately behind the projectile which creates a force called base drag which lessens the velocity of the projectile. It is known that theoretically this base resistance can be reduced or even eliminated by allowing a stream of hot gas to flow out of the base surface of the projectile in a suitable manner. The effect produced by this stream of hot gas is called base-bleed effect. The internal ballistic calculation of existing base bleed configuration is presented in the paper. A numerical simulation of axisymmetric body projectiles was obtained with the Reynolds Averaged Navier-Stokes (RANS) computational fluid dynamics software (CFD). Also, two turbulence models were tested and validated with the semi empirical prediction. The realizable k-ɛ turbulence model was chosen for calculation of aerodynamic drag of the projectile with and without base bleed effect. Computed result show a drag reduction with base bleed of about 12% in supersonic flow regime
Abstract:The aerodynamic data obtained in the static and dynamic wind tunnel tests are presented in this paper. The tests are performed in the T-38 wind tunnel facility of the Military Technical Institute in Belgrade. Normal force and pitching moment in static and dynamic tests are measured using semiconductor five-component strain gauge balance. This specific five-component balance is dynamic derivative balance. Forced oscillation technique is used for the dynamic measurements applied in the T-38 wind tunnel. The wind tunnel data are compared with aerodynamic data determined using flow simulations with RANS (CFD) code and applied models of turbulence. The aerodynamic data calculated using semi-empirical prediction were the initial values for the numerical research. The experimental and numerical data are presented for the one standard missile model (Modified Basic Finner Model) for three flow regime Mach numbers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.