Bone drilling is a universal procedure in orthopaedics for fracture fixation, installing implants, or reconstructive surgery. Surgical drills are subjected to wear caused by their repeated use, thermal fatigue, irrigation with saline solution, and sterilization process. Wear of the cutting edges of a drill bit (worn drill) is detrimental for bone tissues and can seriously affect its performance. The aim of this study is to move closer to minimally invasive surgical procedures in bones by investigating the effect of wear of surgical drill bits on their performance. The surface quality of the drill was found to influence the bone temperature, the axial force, the torque and the extent of biological damage around the drilling region. Worn drill produced heat above the threshold level related to thermal necrosis at a depth equal to the wall thickness of an adult human bone. Statistical analysis showed that a sharp drill bit, in combination with a medium drilling speed and drilling at shallow depth, was favourable for safe drilling in bone. This study also suggests the further research on establishing a relationship between surface integrity of a surgical drill bit and irreversible damage that it can induce in delicate tissues of bone using different drill sizes as well as drilling parameters and conditions.