Background: The global COVID-19 pandemic has peaked but some countries such as China are reporting serious infectious outbreaks due to SARS-CoV-2 variants. Waning vaccine-derived immunogenicity and mutations in variants allowing vaccine evasion require new booster immunization approaches. We compared homologous and heterologous boosting in adults previously fully primed with a whole-virus inactivated COVID-19 vaccine. Methods: At multiple sites in the Philippines we enrolled 430 adults (18-72 years) immunized with two doses of CoronaVac at least 3 months previously and randomly assigned them to receive homologous (CoronaVac, n = 216) or heterologous (recombinant protein vaccine, SCB-2019, n = 214) booster doses. Non-inferiority/superiority of the neutralizing antibody (NAb) response 15 days after boosting was measured by microneutralization against prototype SARS-CoV-2, and Delta and Omicron variants in subsets (50 per arm). Participants recorded solicited local and systemic adverse events for 7 days, unsolicited AEs until Day 29, and serious adverse events until Day 60. Results: NAb geometric mean titers (GMT) against prototype on Day 15 were 744 (95% CI: 669-828) and 164 (143-189) in heterologous and homologous groups, respectively, with a heterologous/homologous GMT ratio of 4.63 (3.95-5.41), meeting both pre-defined non-inferiority and superiority criteria. Similarly, geometric mean-fold rises for NAb against Delta and Omicron BA.1, BA.2, BA.4 and BA.5 variants were superior after heterologous SCB-2019 (range 3.01-4.66) than homologous CoronaVac (range 0.85-1.6) in an exploratory analysis. Reactogenicity and safety measures were evenly balanced between groups; the most frequent local reaction was mild or moderate injection site pain; mild or moderate headache and fatigue were the most frequent systemic adverse events. No vaccine-related serious adverse events were reported. Conclusion: Heterologous boosting of CoronaVac-immunized adults with SCB-2019 was well tolerated with superior immunogenicity than homologous boosting, particularly for newly emerged variants, supporting use of SCB-2019 for booster vaccination.