Hindlimb pain models developed in rats have been transposed to mice, but assumed sciatic nerve neuroanatomic similarities have not been examined. We compared sciatic nerve structural organization in mouse strains (C57BL/6J, DBA/2J, and B6129PF2/J) and rat strains (Wistar, Brown Norway, and Sprague-Dawley). Dissection and retrograde labeling showed mouse sciatic nerve origins predominantly from the third lumbar (L3) and L4 spinal nerves, unlike the L4 and L5 in rats. Proportionate contributions by each level differed significantly between strains in both mice and rats. Whereas all rats had six lumbar vertebrae, variable patterns in mice included mostly five vertebrae in DBA/2J, mostly six vertebrae in C57BL/6J, and a mix in B6129PF2/J. Mice with a short lumbar vertebral column showed a rostral shift in relative contributions to the sciatic nerve by L3 and L4. Ligation of the mouse L4 nerve created hyperalgesia similar to that in rats after L5 ligation, and motor changes were similar after mouse L4 and rat L5 ligation (foot cupping) and after mouse L3 and rat L4 ligation (flexion weakness). Thus, mouse L3 and L4 neural segments are anatomically and functionally homologous with rat L4 and L5 segments. Neuronal changes after distal injury or inflammation should be sought in the mouse L3 and L4 ganglia, and the spinal nerve ligation model in mice should involve ligation of the L4 nerve while L3 remains intact. Strain-dependent variability in segmental contributions to the sciatic nerve may account in part for genetic differences in pain behavior after spinal nerve ligation.