Approximately thousand years ago it was reported the use of mandibles of ants for suture. In this sense, bioinspired components, as absorbable surgical clamps, can be designed. This study is aimed to characterize the mandible of the ant Atta laevigata in order to help the selection of candidate biomaterials for application as surgical clamps. Three pairs of mandibles were used and ten nanoindenations were performed in each pair. The average hardness for the samples in the internal and external regions were 0.36 ± 0.06 GPa and 0.19 ± 0.04 GPa, respectively and the average elastic modulus for the internal and external regions were 6.16 ± 0.23 GPa and 2.74 ± 0.44 GPa, respectively. The morphology of the mandible was observed in detail by scanning electron microscopy, as well as Energy-dispersive X-ray spectroscopy. The average roughnesses on the internal and external regions, measured by atomic force microscopy, were 6.73 ± 0.90 nm and 11.87 ± 1.42 nm, respectively. From these results, it was possible to identify biomaterials that mimic the mandible behaviour for surgical clamp.