Volume 3: Thermal Hydraulics; Current Advanced Reactors: Plant Design, Construction, Workforce and Public Acceptance 2009
DOI: 10.1115/icone17-75174
|View full text |Cite
|
Sign up to set email alerts
|

Comparison of Thermal Hydraulic Simulations of Beyond Design Basis Events Using the MAAP4 and CENTS Computer Codes

Abstract: The MAAP4 computer code (Reference 1) is often used to perform thermal hydraulic simulations of severe accident sequences for nuclear power plant Probabilistic Risk Assessments (PRAs). MAAP4 can be used to simulate accidents for both Boiling Water Reactors (BWRs) as well as Pressurized Water Reactors (PWRs). This assessment employs MAAP 4.0.6a for PWRs (References 1 and 5), which incorporates explicit thermal hydraulic modeling of the Reactor Coolant System (RCS) and Steam Generators (SGs), along with a nodali… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0

Year Published

2013
2013
2013
2013

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(2 citation statements)
references
References 0 publications
0
2
0
Order By: Relevance
“…However, it was not in the scope of this study to treat the uncertainties. In the paper [17] describing the comparison of the short-term SBO results obtained by MAAP4 and CENTS computer codes it is indicated that the overall trends of key parameters are similar, and there are differences in the timing of significant occurrences (e.g., SG dryout, core uncovery). Also it is stated that although the timings and durations of key occurrences and actuations vary, MAAP4 predictions of core uncovery tend to be conservatively biased.…”
Section: Timesmentioning
confidence: 99%
See 1 more Smart Citation
“…However, it was not in the scope of this study to treat the uncertainties. In the paper [17] describing the comparison of the short-term SBO results obtained by MAAP4 and CENTS computer codes it is indicated that the overall trends of key parameters are similar, and there are differences in the timing of significant occurrences (e.g., SG dryout, core uncovery). Also it is stated that although the timings and durations of key occurrences and actuations vary, MAAP4 predictions of core uncovery tend to be conservatively biased.…”
Section: Timesmentioning
confidence: 99%
“…For example, as shown in Table 2 the RELAP5/MOD3.3 for scenario S0-75 depressurized to 1.57 MPa core uncovery was predicted to occur in 3 days and 17 hours, while in the case of MAAP 4.0.5 calculations in 2 days and 17 hours. Finally, in [17] it was stated that a new MAAP5 code incorporates a momentum equation to model the primary side natural circulation flow rate and a more detailed SG model to more accurately predict secondary side behavior. Therefore, using MAAP5 would provide even better basis for evaluation of MAAP conservatism with respect to RELAP5/MOD3.3 results.…”
Section: Timesmentioning
confidence: 99%