In vitro organotypic models for testing ocular irritants have warranted sufficient interest as methods to replace in vivo ocular testing. The in vitro organotypic models claim to maintain short-term normal physiological and biochemical function of the mammalian cornea in an isolated system. In these test methods, damage by the test substance is assessed by quantitative measurements of changes in corneal opacity and permeability using opacitometry and spectrophotometry, respectively. Both measurements are used quantitatively for irritancy classification for prediction of the in vivo ocular irritation potential of a test substance. Examples of organotypic models that incorporate these criteria include: the bovine corneal opacity and permeability (BCOP) assay, the isolated chicken eye (ICE) test method and the isolated rabbit eye (IRE) assay. A fourth method, the hen's egg test-chorioallantoic membrane (HET-CAM) assay, differs in the evaluation criteria but is also normally included among this class of in vitro protocols. Each of these protocols is discussed in detail as representative candidate in vitro methods for assessing ocular irritation and corrosion. The methodologies, protocol details, applications, and their validation status are discussed. A brief historical perspective of the development of original in vitro ocular testing models is also mentioned. More importantly, improvement and troubleshooting the current techniques, in order to present the models as stand-alone in vitro tools for ocular toxicity assessment, is emphasized.