Abstract. Increasing amounts of data, together with more computing power and better machine learning algorithms to analyse the data are causing changes in almost every aspect of our lives. This trend is expected to continue as more data becomes available, computing power increases and machine learning algorithms improve. Flood risk and impact assessments are also being influenced by this trend, particularly in areas such as the development of mitigation measures, emergency response preparation, and flood recovery planning. Machine learning methods have the potential to improve accuracy as well as reduce calculating time and model development cost. It is expected that in the future more applications become feasible and many process models and traditional observation methods will be replaced by machine learning. Examples of this include the use of machine learning on remote sensing data to estimate exposure or on social media data to improve flood response. Some improvements may require new data collection efforts, such as for the modelling of flood damages or defence failures. In other fields, machine learning may not be suitable or should be applied complementary to process models, for example in hydrodynamic applications. Overall, machine learning is likely to drastically improve future flood risk and impact assessments, but issues such as applicability, bias and ethics must be considered carefully. This paper presents some of the current developments on the application of machine learning for flood risk and impact assessment, and highlights some key needs and challenges.