The study of body composition can be used to verify one's state of fitness and the effectiveness of a training program. The aim of the study is to present the integration of this method for total and segmental assessment of body composition. 59 elite soccer players (aged 22.47 ± 5.58 years, height 1.81 ± 0.08 m) were enrolled for the study. Before the season and after 50 days of training, a body composition assessment was carried out. For the measurement of fat mass, folds of skin in 8 different regions were used. To evaluate cell mass and hydration status, bioimpedance with both whole-body and vector methods was used. The localized evaluation was performed by assessing bioelectrical values of the quadriceps, hamstrings and calf. Data before and after 50 days of soccer training were compared (t test for paired data). The values of body composition were within the normal range for the sample. After 50 days of training, there was a significant increase in BMI mainly dependent on extracellular water. The fat did not undergo quantitative changes but only a change in distribution occurs. Lower limb muscles showed an increase in the amount of water more significant than the total body assessment. An integration of fat and fat-free mass in athletes allows us to determine different adaptations to training methods. The assessment of body segments under more stress by physical training provides more specific information than the total body assessment in athletes. This method could evaluate a peripheral status of hydration and cellular mass.