There is a rapidly expanding literature on the in vitro antiviral activity of drugs that may be repurposed for therapy or chemoprophylaxis against SARS-CoV-2. However, this has not been accompanied by a comprehensive evaluation of the ability of these drugs to achieve target plasma and lung concentrations following approved dosing in humans. Moreover, most publications have focussed on 50% maximum effective concentrations (EC50), which may be an insufficiently robust indicator of antiviral activity because of marked differences in the slope of the concentration-response curve between drugs. Accordingly, in vitro anti-SARS-CoV-2 activity data was digitised from all available publications up to 13 th April 2020 and used to recalculate an EC90 value for each drug. EC90 values were then expressed as a ratio to the achievable maximum plasma concentrations (Cmax) reported for each drug after administration of the approved dose to humans (Cmax/EC90 ratio). Only 14 of the 56 analysed drugs achieved a Cmax/EC90 ratio above 1 meaning that plasma Cmax concentrations exceeded those necessary to inhibit 90% of SARS-CoV-2 replication. A more in-depth assessment of the putative agents tested demonstrated that only nitazoxanide, nelfinavir, tipranavir (boosted with ritonavir) and sulfadoxine achieved plasma concentrations above their reported anti-SARS-CoV-2 activity across their entire approved dosing interval at their approved human dose. For all drugs reported, the unbound lung to plasma tissue partition coefficient (KpUlung) was also simulated and used along with reported Cmax and fraction unbound in plasma to derive a lung Cmax/EC50 as a better indicator of potential human efficacy (lung Cmax/EC90 ratio was also calculable for a limited number of drugs). Using this parameter hydroxychloroquine, chloroquine, mefloquine, atazanavir (boosted with ritonavir), tipranavir (boosted with ritonavir), ivermectin, azithromycin and lopinavir (boosted with ritonavir) were all predicted to achieve lung concentrations over 10-fold higher than their reported EC50. This analysis was not possible for nelfinavir because insufficient data were available to calculate KpUlung but nitozoxanide and sulfadoxine were also predicted to exceed their reported EC50 by 3.1-and 1.5-fold in lung, respectively. The antiviral activity data reported to date have been acquired under different laboratory conditions across multiple groups, applying variable levels of stringency. However, this analysis may be used to select potential candidates for further clinical testing, while deprioritising compounds which are unlikely to attain target concentrations for antiviral activity. Future studies should focus on EC90 values and discuss findings in the context of achievable exposures in humans, especially within target compartments such as the lung, in order to maximise the potential for success of proposed human clinical trials.