Achyranthes bidentata polysaccharides (ABPS) is an active ingredient of the flowering plant Achyranthes bidentata that has been previously reported to be effective for the treatment of osteoarthritis (OA). However, the underlying molecular mechanism remain to be fully clarified. Emerging studies have shown that the long non-coding RNA (lncRNA) growth arrest-specific transcript 5 (GAS5) is involved in the pathogenesis of OA. Therefore, the present study aimed to investigate the potential mechanism of ABPS by focusing on its effects on the regulation of chondrocyte extracellular matrix (ECM) homeostasis, with particular emphasis on lncRNA GAS5. In the present study, the modified Hulth method was used to construct OA rats, which were gavaged with 400 mg/kg ABPS for 8 weeks. Histopathological changes in cartilage and subchondral bone were evaluated by hematoxylin-eosin staining and Safranin O-fast green staining. In in vitro experiments, IL-1β-treated chondrocytes were infected with Lenti-lncRNA GAS5. Fluorescence in situ hybridization assay was performed to measure the expression of the lncRNA GAS5 in chondrocytes. Moreover, the relative expression level of lncRNA GAS5 in cartilage tissue and chondrocytes was detected using reverse transcription-quantitative PCR. Western blot analysis was used to detect protein expression levels of MMP-9, MMP-13, TIMP-1, TIMP-3 and type II collagen in cartilage tissue and chondrocytes. The results indicated that ABPS delayed the degradation of the ECM by chondrocytes in addition to reducing lncRNA GAS5 expression both in vivo and in vitro. Furthermore, silencing of lncRNA GAS5 expression in IL-1β-treated chondrocytes downregulated the protein expression of MMP-9 and MMP-13 whilst upregulating the expression of tissue inhibitor matrix metalloproteinase (TIMP)-1, TIMP-3 and type II collagen. To conclude, the present study provides evidence that ABPS can inhibit the expression of lncRNA GAS5 in chondrocytes to regulate the homeostasis of ECM, which in turn may delay the occurrence of cartilage degeneration during OA.