Purpose: To evaluate the therapeutic effects of combined atlas fracture with type II (C 1 -type II) odontoid fractures and to outline a management strategy for it. Patients and Methods: Twenty three patients with C 1 -type II odontoid fractures were treated according to our management strategy. Nonoperative external immobilization in the form of cervical collar and halo vest was used in 13 patients with stable atlantoaxial joint. Surgical treatment was early performed in 10 patients whose fractures with traumatic transverse atlantal ligament disruption or atlantoaxial instability. The visual analog scale (VAS), neck disability index (NDI) scale, and American Spinal Injury Association (ASIA) scale at each stage of followup were then collected and compared. Results: Compared to pretreatment, the VAS score, NDI score, and ASIA scale were improved among both groups at followup evaluation after treatment. However, in the nonsurgical group, one patient (1/11) developed nonunion which required surgical treatment in later stage and one patient (1/13) with halo vest immobilization had happened pin site infection. Two patients of the surgical group (2/11) had appeared minor complications: occipital cervical pain in one case and cerebrospinal fluid leakage in one case. Two patients (2/23) were excluded from nonsurgical treatment group because their followup period was less than 12 months. Twenty one patients were followed up regularly with an average of 23.9 months (range 15–45 months). Conclusions: We outlined our concluding management principle for the treatment of C 1 -type II odontoid fractures based on the nature of C 1 fracture and atlantoaxial stability. The treatment principle can obtain satisfactory results for the management of C 1 -type II odontoid fractures.
Osteoarthritis (OA) is a chronic arthropathy that occurs in the middle-aged and elderly population. The present study aimed to identify gene signature differences between synovial cells from OA synovial membrane with and without inflammation, and to explain the potential mechanisms involved. The differentially expressed genes (DEGs) between 12 synovial membrane with inflammation and 12 synovial membrane without inflammation from the dataset GSE46750 were identified using the Gene Expression Omnibus 2R. The DEGs were subjected to enrichment analysis, protein-protein interaction (PPI) analysis and module analysis. The analysis results were compared with text-mining results. A total of 174 DEGs were identified. Gene Ontology enrichment results demonstrated that functional molecules encoded by the DEGs primarily had extracellular location, molecular functions predominantly involving ‘chemokine activity’ and ‘cytokine activity’, and were associated with biological processes, including ‘inflammatory response’ and ‘immune response’. The Kyoto Encyclopedia of Genes and Genomes results demonstrated that DEGS may function through pathways associated with ‘rheumatoid arthritis’, ‘chemokine signaling pathway’, ‘complement and coagulation cascades’, ‘TNF signaling pathway’, ‘intestinal immune networks for IgA production’, ‘cytokine-cytokine receptor interaction’, ‘allograft rejection’, ‘Toll-like receptor signaling pathway’ and ‘antigen processing and presentation’. The top 10 hub genes [interleukin (IL)6, IL8, matrix metallopeptidase (MMP)9, colony stimulating factor 1 receptor, FOS proto-oncogene, AP1 transcription factor subunit, insulin-like growth factor 1, TYRO protein tyrosine kinase binding protein, MMP3, cluster of differentiation (CD)14 and CD163] and four gene modules were identified from the PPI network using Cytoscape. In addition, text-mining was used to identify the commonly used drugs and their targets for the treatment of OA. It was initially verified whether the results of the present study were useful for the study of OA treatment targets and pathways. The present study provided insight for the molecular mechanisms of OA synovitis. The hub genes and associated pathways derived from analysis may be targets for OA treatment. IL8 and MMP9, which were validated by text-mining, may be used as molecular targets for the OA treatment, while other hub genes require further validation.
This study aimed to identify whether the NF-κB signaling pathway plays a key role in the treatment of osteoarthritis (OA) with Bushen Zhuangjin Decoction (BZD) based on a typical network pharmacology approach (NPA). Four sequential experiments were performed: 1) conventional high-performance liquid chromatography (HPLC), 2) preliminary observation of the therapeutic effects of BZD, 3) NPA using three OA-related gene expression profiles, and 4) verification of the key pathway identified by NPA. Only one HPLC-verified compound (paeoniflorin) was identified from the candidate compounds discovered by NPA. The genes verified in the preliminary observation were also identified by NPA. NPA identified a key role for the NF-κB signaling pathway in the treatment of OA with BZD, which was confirmed by conventional western blot analysis. This study identified and verified NF-κB signaling pathway as the most important inflammatory signaling pathway involved in the mechanisms of BZD for treating OA by comparing the NPA results with conventional methods. Our findings also indicate that NPA is a powerful tool for exploring the molecular targets of complex herbal formulations, such as BZD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.