In this paper, we propose an injection-based axis switching (IAS) sensorless control scheme using a pulsating highfrequency (HF) signal to minimize position detection error and velocity estimation ripple resulting from the zero-currentclamping (ZCC) effect for surface-mounted permanent-magnet motors. When a pulsating carrier-signal voltage is injected in an estimated synchronous frame, the envelope of the resulting HF current measured in the stationary reference frame follows an amplitude-modulated pattern. Using this information, the IAS technique allows one to avoid multiple zero crossings of HF currents by adjusting the current phase angle according to the load condition. At no-load condition, the pulsating voltage is injected only on the d-axis, while the d-axis current is controlled to a certain nonzero value. Under a load condition, the injection voltage is switched to the q-axis, while the d-axis current drops back to zero. Thus, the proposed sensorless control enforces a much better estimation performance in a region of ZCC without a predefined offline commissioning test than the standard pulsating injection scheme. Experiments illustrate the effectiveness of the proposed method in suppressing the estimation error caused by the ZCC disturbance and in extending the system bandwidth.Index Terms-Estimated position error and velocity ripple, injection-based axis switching (IAS) sensorless control, pulsating high-frequency (HF) signal injection, zero-current-clamping (ZCC) effect.