2016
DOI: 10.1088/1757-899x/114/1/012064
|View full text |Cite
|
Sign up to set email alerts
|

Competing risk models in reliability systems, a weibull distribution model with bayesian analysis approach

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2018
2018
2022
2022

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(2 citation statements)
references
References 10 publications
0
1
0
1
Order By: Relevance
“…Hazhiah, dkk [5] mengkaji proses pengestimasian parameter dari distribusi Weibull terhadap data tak tersensor dan data tersendor ttpe II dengan metode Bayes (distribusi prior yang digunakan yaitu distribusi Gamma). Ismed dan Yudi [8] menggunakan metode Bayes dalam membuat model sistim risiko daya tahan yang bersaing (computing risk systems) dengan data diasumsikan berdistribusi Weibull. Kemudian Ahmed [6] dan Thamrin, dkk, [9] mengestimasi parameter dari distribusi Weibull dengan metode Bayesian survival (menggunakan prior non informatif distribusi Gamma) dan metode maksimum likelihood tetapi kedua hasil kajian mereka saling bertolak belakang.…”
Section: Pendahuluanunclassified
“…Hazhiah, dkk [5] mengkaji proses pengestimasian parameter dari distribusi Weibull terhadap data tak tersensor dan data tersendor ttpe II dengan metode Bayes (distribusi prior yang digunakan yaitu distribusi Gamma). Ismed dan Yudi [8] menggunakan metode Bayes dalam membuat model sistim risiko daya tahan yang bersaing (computing risk systems) dengan data diasumsikan berdistribusi Weibull. Kemudian Ahmed [6] dan Thamrin, dkk, [9] mengestimasi parameter dari distribusi Weibull dengan metode Bayesian survival (menggunakan prior non informatif distribusi Gamma) dan metode maksimum likelihood tetapi kedua hasil kajian mereka saling bertolak belakang.…”
Section: Pendahuluanunclassified
“…Modeling competing risks survival data can be carried out using a semi-parametric, nonparametric or parametric survival models (see Fine and Gray (1999)). The parametric models are studied assuming that the competing risks follow different lifetime distributions such as exponential, Lognormal and Weibull (see Sarhan (2007), Cox (1959), Pascual (2010), Yáñez et al (2014), Iskandar and Gondokaryono (2016)). One of the advantages of using the parametric approaches rather non-parametric and semiparametric approaches is as follows: when the parametric model has been chosen correctly, it is possible to predict the event occurrence probability in future and have a clear picture of survival time and hazard function.…”
Section: Introductionmentioning
confidence: 99%