Abstract:Despite the impressive achievements of reinforcement learning (RL) in playing Backgammon already in the beginning of the 90's, relatively few successful real-world applications of RL have been reported since then. This could be due to the tendency of RL research to focus on discrete Markov Decision Processes that make it difficult to handle tasks with continuous-valued features. Another reason could be a tendency to develop continuously more complex mathematical RL models that are difficult to implement and operate. Both of these issues are addressed in this paper by using the gradient-descent Sarsa(λ) method together with a Normalised Radial Basis Function neural net. The experimental results on three typical benchmark control tasks show that these methods outperform most previously reported results on these tasks, while remaining computationally feasible to implement even as embedded software. Therefore the presented results can serve as a reference both regarding learning performance and computational applicability of RL for real-life applications.