ABSTRACT:Complement is an important effector arm of the human immune response. Binding of proteolytic fragments derived from activation of complement by specific receptors leads to responses as diverse as inflammation, opsonization, and B-cell activation. The importance of characterizing the expression and regulation of complement in the CNS is highlighted by growing evidence that complement plays a significant role in the pathogenesis of a variety of neurological diseases, such as multiple sclerosis and Alzheimer's disease. \n vitro studies have demonstrated that astrocytes, the predominant glial cell type in the brain, are capable of expressing or producing a majority of the components of the complement system. Expression of many complement proteins synthesized by astrocytes is regulated by both pro-and anti-inflammatory cytokines, many of which are also produced by several cell types in the CNS. In addition to astrocytes, ependymal cells, endothelial cells, microglia, and neurons have recently been shown to synthesize various complement proteins or express complement receptors on their cell surfaces. Together, these studies demonstrate that several cell types throughout the brain have the potential to express complement and, in many cases, increase expression in response to mediators of the acute phase response. These studies suggest that complement may play a greater role in CNS immune responses than previously thought, and pave the way for better understanding of the dynamics of complement expression and regulation in vivo. Such understanding may lead to therapeutic manipulation of complement host defense functions in a variety of inflammatory and degenerative diseases in the CNS.